OKLAHOMASTATEUNIVERSITY
SCHOOL OF ELECTRICALAND COMPUTERENGINEERING

ECEN 4413
 Automatic Control Systems Spring 2009

Midterm Exam \#2

Choose any four out of five problems. Please specify which four listed below to be graded

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name: \qquad

E-Mail Address: \qquad

Problem 1:

The equations that describe the dynamics of a motor control system are
$e_{a}(t)=R_{a} i_{a}(t)+L_{a} \frac{d i_{a}(t)}{d t}+K_{b} \frac{d \theta_{m}(t)}{d t}$
$T_{m}(t)=K_{i} i_{a}(t)$
$T_{m}(t)=J \frac{d^{2} \theta_{m}(t)}{d t^{2}}+B \frac{d \theta_{m}(t)}{d t}+K \theta_{m}(t)$
$e_{a}(t)=K_{a} e(t)$
$e(t)=K_{s}\left[\theta_{r}(t)-\theta_{m}(t)\right]$
a) Assign the state variables as $x_{1}(t)=\theta_{m}(t), x_{2}(t)=d \theta_{m}(t) / d t$, and $x_{3}(t)=i_{a}(t)$.

Express the state space representation in the form of
$\frac{d x(t)}{d t}=A x(t)+B \theta_{r}(t), \quad \theta_{m}(t)=C x(t)$.
b) Develop a corresponding state diagram.
c) Find the transfer function $G(s)=\Theta_{m}(s) / E(s)$ when the feedback path from $\Theta_{m}(s)$
to $E(s)$ is broken. Find the closed-loop transfer function, $M(s)=\Theta_{m}(s) / \Theta_{r}(s)$.

Problem 2:

Write the equation of motion for the linear translational system shown below. Draw the state diagram using a minimum number of integrators. Write the state equation from the state diagram. Find the transfer functions $Y_{1}(s) / F(s)$ and $Y_{2}(s) / F(s)$. Set $M g=0$ for the transfer function.

Problem 3:

For the system described by input-output differential equation given below, $c \dddot{y}=(a+1) y+\dot{y}-b \ddot{y}+2 u+\dot{u}+\ddot{u}$,
find the state space representation in the form of

$$
\dot{x}(t)=A x(t)+b u(t)
$$

$$
y(t)=c x(t)+d u(t),
$$

where input is $u(t)$ and output is $y(t)$.

Problem 4:

For the state variable description,

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t), \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

if $u(t)=e^{-3 t} u_{s}(t)$, where $u_{s}(t)$ is the unit step function and initial conditions are all zeros, find $y(t)$.

Problem 5:

Derive the state space representation of the system in the state diagram shown below $\dot{x}(t)=A x(t)+B r(t), \quad y(t)=C x(t)$.
Please note the initial conditions are ignored here.

